Escaping Ageing Lions

If you can’t beat em, constrain em.
Who am I?

Josh Vander Hook
w/ Volkan Isler
Robotic Sensor Networks

http://josh.vanderhook.info
http://rsn.cs.umn.edu
josh@vanderhook.info
Why lions and men?

- Pursuit evasion games
- Proposed in 1925 by Rado
- Can show practical limitations
- Can show feasibility of real-world applications
Varying the problem

- velocity
- kinematics
- information

This talk: “Solutions” to some “interesting” problems, and a brief overview of my current work
Problem 1

Man is at \(m(t) \) and lion is at \(l(t) \). Is there some finite \(t \) where \(m(t) = l(t) \)?

- Fit lions are fast (\(v_l > v_m \))
- No constraints on movement
Problem 1

Man is at \(m(t) \) and lion is at \(l(t) \). Is there some finite \(t \) where \(m(t) = l(t) \)?

- Fit lions are fast \((v_l > v_m)\)
- No constraints on movement

Lion wins, too easy. (Proof?)
Problem 2: Fat lions

Man is at m(t) and lion is at l(t). Is there some finite t where m(t)==l(t)?

- Fat lions are not so fast (vl == vm)
- No other constraints on movement

Not so easy …
Problem 2: Fat lions

- Run around the outside of the arena
- Lion on “pure pursuit”
Problem 2: Fat lions

Man escapes! (If lion is doing “pure pursuit”)

- But what about other lion strategies?
Problem 3: Fat, smarter lions

Lions Counter!

- Introduce the Canonical “lion’s move”
 - (Rado’s own solution)
- Same evader strategy
Problem 3: Fatter, smarter lions

Lions Counter!

- Introduce the Canonical “lion’s move”
 - (Rado’s own solution)
- Same evader strategy
- Lion wins again!

- What’s the problem with this counter?

\[
\delta t^2 = r_i^2 + r_{i+1}^2 - 2r_i r_{i+1} \cos \theta \\
\theta = \frac{\delta t}{r_e} \\
r' = \lim_{\delta t \to 0} \frac{\sqrt{r^2 (\cos^2 (\frac{\delta t}{r_e}) - 1) + \delta t^2 + r \cos (\frac{\delta t}{r_e})}}{\delta t} \\
r' = \sqrt{1 - \frac{r}{r_e}}
\]
Problem 3: Fatter, smarter lions

Lions Counter!

- Introduce the Canonical “lion’s move”
 - (Rado’s own solution)
- Same evader strategy
- Lion wins again!

But wait, evader strategy exists to counter all continuous-time fatty lion strategies (but lion gets very close).

Problem 4: Fatter lions with big arms

Man is at \(m(t) \) and lion is at \(l(t) \) and has a capture radius \(C \). Is there some finite \(t \) where \(|m(t) - l(t)| < C \)?

- Equal velocities
Problem 4: Fatter lions with big arms

Man is at $m(t)$ *and lion is at* $l(t)$ *and has a capture radius* C. *Is there some finite* t *where* $|m(t) - l(t)| < C$?

- Equal velocities
- Apply any of the previous continuous time strategies
 - Lion’s move most popular
- But how long does it take?
 - Best so far is $O(r/c \log r/c)$
 - 40 years later! [Alonso, Reingold ‘93]
Problem 5: Superfast lions on bikes

Man is at \(m(t) \) *and lion is at* \(l(t) \). *Is there some finite* \(t \) *where* \(m(t) = = l(t) \)?

- Lions are super fast \((v_l > v_m) \)
- Lion must have a continuous trajectory
 - with bounded curvature

*Not so easy ... *

1. Isaacs, 1951
2. Mertz, 1971
3. Lewin, 1973
Problem 6: Superfast lions in wheelchairs

Man is at $m(t)$ and lion is at $l(t)$. Is there some finite t where $m(t) == l(t)$?

- Lions are super fast ($v_l > v_m$)
- Lion uses differential drive kinematics

Not so easy again …

1. Ruiz “Time-Optimal Motion Strategies for Capturing an Omnidirectional Evader Using a Differential Drive Robot” TRO 2013
Varying Information

- Can the pursuer *always* see the evader?
- Can the pursuer see *everything* about the evader?
Deer is at $m(t)$ and wolf is at $l(t)$. Is there some finite D where $|w(t)-d(t)|<D$ for all t?

- “Cursorial Hunting”
- Wolves aren’t too fast ($v_w=v_d$)
- No motion constraints
- Wolves can’t see well
- Open problems!
Example: Position Error

- Game in the plane
- Same Speeds
- Pursuer sees an erroneous position, \(m'(t) \)
- But \(|m'(t) - m(t)| < 1 \)

Can the pursuer maintain the distance to the evader?

- No, [Gunter Rote, 2003] gave an evader strategy
- Distance increases at a rate proportional to \(T^{\frac{1}{3}} \)

Does this help the Arena case? Unknown! (I know)
Direction Only : Fat Lions with Cataracts?

Our recent results!
- Game in the plane
- Same Speeds
- Pursuer sees an erroneous direction, $b'(t)$
- But $|b'(t) - b(t)|$ is bounded.

Can the pursuer maintain the distance to the evader?
- Special case: $b'(t) == b(t)$?
- If not, is distance more or less than $T^{\frac{1}{3}}$?
Direction Only: Sensing model
Evader moves along one of two trajectories, \(e(t) \) or \(e'(t) \), such that both are indistinguishable from the pursuer’s perspective.
It turns out, if the evader travels C times d during a round, the ending distance is more than the starting distance.
Direction Only : Evader’s Strategy
Direction Only : Evader’s Strategy
Direction Only: Evader’s Strategy
Can we use the distance increase to escape from a lion, even when the arena is bounded?

- Small arenas don’t have enough “room” to execute the distance-increasing strategies
- Current distance-increasing strategies require *straight line trajectories*
- Does a size limit exist for pursuer-win setups?
- If so, does the “quality” of the information affect the size?
- If so, what are the limits on the size as a function of the “quality”

Current work. Answers coming!
Thanks

Josh Vander Hook
w/ Volkan Isler
Robotic Sensor Networks

http://josh.vanderhook.info
http://rsn.cs.umn.edu
josh@vanderhook.info