Robotic Sensor Networks

Why robots?

I would like to do ______,

but I don't have enough ______.

Why robots?

I would like to do <u>geology on Mars</u>,

but I don't have enough <u>ways to get home</u>.

Image: Creative Commons

Invasive Species Monitoring

Once located, an aggregation of invasive fish can be effectively and safely removed

Invasive Species Monitoring

Aggregations!

Aggregations occur unpredictably, requiring constant vigilance.

Why robots?

I would like to do Invasive Species Monitoring,

but I don't have enough <u>of these guys</u>

How we solve

- 1. Abstract the problem using a useful mathematical formulation
- 2. Solve the abstracted problem and provide guarantees of quality
- 3. Verify the abstraction *in the field, extensively*

Example Solution

1. Novel Active Measurement Strategy to locate stationary fish (i.e., in an aggregation)

Example Solution

- 1. Novel Active Measurement Strategy
- 2. Provided the first lower and upper bound on time to localize

Example Solution

- Novel Active Measurement Strategy
- 2. Provided the first lower and upper bound on time to localize
- 3. Documented three years of field experiments ...

